Conversion From NFA to DFA

DFA

- For every string x, there is a unique path from initial state and associated with x .

x is accepted if and only if this path ends at a final state.

NFA

- For any string x, there may exist none or more than one path from initial state and associated with x.

NFA \rightarrow DFA

- Consider an NFA M=(Q, $\Sigma, \delta, s, F)$.
- For x in Σ^{*}, define $[x]=\{q$ in $Q \mid$ there exists a path s
q)
- Define DFA M'=(Q', $\left.\Sigma, \delta^{\prime}, s^{\prime}, F^{\prime}\right\}:$ $Q^{\prime}=\left\{[x] \mid x\right.$ in $\left.\Sigma^{*}\right\}$,
$\delta([x], a)=[x a]$ for x in Σ^{*} and a in Σ,
$\mathrm{s}^{\prime}=[\varepsilon]$,
$F^{\prime}=\{[x] \mid x$ in $L(M)\}$

Construction of M'

Special Case: M has no ε-move.
$\circ[\varepsilon]=\{s\}$

- Suppose [x] is known. How to get [xa] for a in Σ ?

FROM [X] TO [XA]

- $[x a]=\{p \mid$ there exists a path $q \quad p$ for some q in [x] \}
$=\{p \mid$ there exists q in $[x]$,
q p\}
$\stackrel{\text { edge }}{\stackrel{a}{a}}$
$\delta(q, a)$
q in $[x]$

Construction of M'

- $F^{\prime}=\{[x] \mid x$ in $L(M)\}$

$$
=\{[x] \mid[x] \cap F \neq \dot{\varnothing}\}
$$

ExAMPLE 1

- Construct DFA to accept 00(0+1)*

EXAMPLE 2

- Design DFA to accept $(0+1)^{*} 11$

Example 3

- Design DFA to accept $00(0+1)^{*} 11$

EXAMPLE 4

- Construct DFA M for $L(M)=\varepsilon$.
\rightarrow (S) Is this a DFA?

Example 5

- Construct DFA M for $L(M)=\varnothing$.

Construction of M'

- For q in Q, define
ε-closure $(q)=\{p \mid$ there exists a path $q \quad p\}$
$\circ[\varepsilon]=\{q \mid$ there is a path $s \quad q\}$ $=\varepsilon$-closure(s)
- Suppose $[x]$ is known. How to get [xata] for a in Σ ?

From [x] to [xa]

$\circ[x a]=\left\{p \mid\right.$ there exists a path $q \quad p$ for $\frac{a}{\text { path }}$ some q in [x] \}
$=\{p \mid$ there exists q in $[x]$,
$q \quad r \quad p\}$
$=\left\{p \mid\right.$ for some q in $\left.{ }^{\ddagger} x\right]$ and r in $\delta(q, a)$,
p in ε-closure(r) $\}^{\text {eath }}$
$=\mathrm{U} \quad \mathrm{U} \quad \varepsilon$-closure(r)

$$
q \text { in }[x] \quad r \text { in } \delta(q, a)
$$

Construction of M'

- $F^{\prime}=\{[x] \mid x$ in $L(M)\}$

$$
=\{[x] \mid[x] \cap F \neq \dot{\varnothing}\}
$$

EXAMPLE 6

- Construct DFA M for $L(M)=(0+1)^{*}$.

EXAMPLE 7

- Convert the following NFA to DFA.

