CONVERSION FROM NFA TO DFA

DFA

 For every string x, there is a unique path from initial state and associated with x.

Χ x is accepted if and only if this path ends at a final state.

NFA

• For any string x, there may exist none or more than one path from initial state and associated with x.

$NFA \rightarrow DFA$

Consider an NFA M=(Q, Σ, δ, s, F).
For x in Σ*, define

[x] = {q in Q | there exists a path s

Define DFA M'=(Q', Σ, δ', s', F'):

Q' = { [x] | x in Σ* },
δ ([x], a) = [xa] for x in Σ* and a in Σ,
s' = [ε],
F' = { [x] | x in L(M) }

q}

X

```
CONSTRUCTION OF M'
```

Special Case: M has no ε-move.

ο [ε] = {s}

 Suppose [x] is known. How to get [xa] for a in Σ?

FROM [X] TO [XA]

```
o [xa] = { p | there exists a path q
                                                       а
                                         p for
                                                       path
              some q in [x] }
      = \{ p \mid \text{there exists q in } [x], \}
                    q p \}
                              а
                              edge
         U
      =
                     δ(q,a)
             q in [x]
```

CONSTRUCTION OF M'

• Construct DFA to accept 00(0+1)*

• Design DFA to accept (0+1)*11

Design DFA to accept 00(0+1)*11

• Construct DFA M for $L(M) = \epsilon$.

• Construct DFA M for $L(M) = \emptyset$.

CONSTRUCTION OF M'

• For q in Q, define ϵ -closure(q) = {p | there exists a path q \circ [ϵ] = {q | there is a path s **q**} 3 $= \epsilon$ -closure(s) Suppose [x] is known. How to get [xa] for a in Σ ?

p}

3

path

FROM [X] TO [XA]

[xa] = { p | there exists a path q p for some q in [x] }
 = { p | there exists q in [x], q r p }
 = { p | for some q in ⁴x] and r in δ(q,a), p in ε-closure(r)
 = U U ε-closure(r)

q in [x] r in δ (q,a)

CONSTRUCTION OF M'

• Construct DFA M for $L(M)=(0+1)^*$.

• Convert the following NFA to DFA.

